
This article was downloaded by: [132.204.251.254] On: 10 January 2018, At: 06:20
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Management Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Grammar-Based Integer Programming Models for
Multiactivity Shift Scheduling
Marie-Claude Côté, Bernard Gendron, Louis-Martin Rousseau,

To cite this article:
Marie-Claude Côté, Bernard Gendron, Louis-Martin Rousseau, (2011) Grammar-Based Integer Programming Models for
Multiactivity Shift Scheduling. Management Science 57(1):151-163. https://doi.org/10.1287/mnsc.1100.1264

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2011, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/mnsc.1100.1264
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

MANAGEMENT SCIENCE
Vol. 57, No. 1, January 2011, pp. 151–163
issn 0025-1909 �eissn 1526-5501 �11 �5701 �0151

informs ®

doi 10.1287/mnsc.1100.1264
©2011 INFORMS

Grammar-Based Integer Programming Models for
Multiactivity Shift Scheduling

Marie-Claude Côté
CIRRELT and Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal,

Montréal, Québec H3C 3A7, Canada, marie-claude.cote@polymtl.ca

Bernard Gendron
CIRRELT and Département d’Informatique et de Recherche Opérationnelle, Université de Montréal,

Montréal, Québec H3C 3J7, Canada, gendron@iro.umontreal.ca

Louis-Martin Rousseau
CIRRELT and Département de Mathématiques et de Génie Industriel, École Polytechnique de Montréal,

Montréal, Québec H3C 3A7, Canada, louis-martin.rousseau@polymtl.ca

This paper presents a new implicit formulation for shift scheduling problems, using context-free grammars
to model the rules for the composition of shifts. From the grammar, we generate an integer programming

(IP) model having a linear programming relaxation equivalent to that of the classical set covering model. When
solved by a state-of-the-art IP solver on problem instances with a small number of shifts, our model, the
set covering formulation, and a typical implicit model from the literature yield comparable solution times.
On instances with a large number of shifts, our formulation shows superior performance and can model a
wider variety of constraints. In particular, multiactivity cases, which cannot be modeled by existing implicit
formulations, can easily be handled with grammars. We present comparative experimental results on a large set
of instances involving one work activity, as well as on problems dealing with up to 10 work activities.

Key words : shift scheduling; implicit models; mixed integer programming; context-free grammars
History : Received December 23, 2009; accepted August 11, 2010, by Dimitris Bertsimas, optimization.

Published online in Articles in Advance December 3, 2010.

1. Introduction
In this paper, we consider shift scheduling problems
defined over a planning horizon of one day, divided
into multiple periods. In this context, a shift is defined
by its starting and ending times and by the activi-
ties or breaks to be performed at each period. The
assignment of activities and breaks to a shift is con-
strained by different rules mainly arising from work
regulation agreements and ergonomic considerations.
In a single-activity shift scheduling problem, one only
specifies, at each period, if an employee is working
or taking a break. In a multiactivity shift scheduling
problem, there are several work activities, and when-
ever an employee is working at a given period, it is
further necessary to specify which work activity is
assigned to that employee. In this paper, we deal with
multiactivity shift scheduling problems in which all
employees are identical.
The problem we consider is defined as follows.

Given a planning horizon I divided into periods of
equal length, a set of work activities J , the set of all
feasible shifts �, and the number of employees bij

required at each period i ∈ I for each work activ-
ity j ∈ J , one must select from � a subset and mul-
tiplicities for each shift in this subset that covers the

required number of employees at minimum cost. Each
feasible shift s ∈ � has an associated cost cs ≥ 0, which
we assume to be decomposable by period and by work
activity as follows: cs = ∑

i∈I

∑
j∈J �ijscij , where cij ≥ 0,

for each i ∈ I and j ∈ J , and �ijs = 1 if work activity j ∈ J
is assigned to period i ∈ I in shift s ∈ �.
We will consider two types of integer programming

(IP) models for this problem, explicit and implicit, a
terminology that is also used to characterize formula-
tions for single-activity shift scheduling problems. In
an explicit model, one obtains the schedule for each
employee simply by scanning the optimal solution
(i.e., in a time linear to the model size), whereas in
an implicit model, a postprocessing algorithm must be
called upon to derive the schedule for each employee.
This algorithm is typically efficient (i.e., polynomial in
the model size), especially when compared to solving
the model, but its running time is generally not linear
in the model size.
The following IP model, denoted D, extends in a

straightforward manner the original set covering for-
mulation proposed by Dantzig (1954) for the shift
scheduling problem first described by Edie (1954).
This model uses a variable xs for each shift s ∈ �

151

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
152 Management Science 57(1), pp. 151–163, © 2011 INFORMS

corresponding to the number of employees assigned
to shift s:

f �D� =min
∑
s∈�

csxs�

∑
s∈�

�ijsxs ≥ bij� ∀ i ∈ I� j ∈ J � (1)

xs ≥ 0 and integer, ∀ s ∈ �� (2)

Model D explicitly enumerates all feasible shifts;
therefore, we will call it the shift-based explicit model.
Note that model D allows the formulation of prob-
lems with any cost structures that decompose by
shift, not only by period and by work activity, as we
assume in our problem definition (see §6 for a discus-
sion on more general cost structures).
In practice, such explicit models can only be solved

when � is relatively small, or else by using column
generation approaches as in Demassey et al. (2006)
and Mehrotra et al. (2000). In this paper, we present
a new implicit formulation based on assignment vari-
ables yij indicating the number of employees assigned
to activity j ∈ J at period i ∈ I . These variables are
related to the variables in the shift-based explicit
model by the simple equations yij = ∑

s∈� �ijsxs . More
precisely, the nonnegative integer variables xs defined
over feasible shifts s ∈ � in model D are represented
equivalently by using an additional set of integer
variables v ≥ 0 such that �y�v� ∈ H , where H is a
bounded polyhedron. The implicit model that we pro-
pose, denoted Q, has therefore the following form:

f �Q� =min
∑
i∈I

∑
j∈J

cijyij �

yij ≥ bij and integer� ∀ i ∈ I� j ∈ J � (3)

�y�v� ∈ H� (4)

v ≥ 0 and integer� (5)

Côté et al. (2007, 2009) exploit automata and context-
free grammars to formulate similar IP models that
represent all feasible shifts for any single employee.
Because they explicitly represent the assignment of
work activities to each employee, these formulations
belong to the class of explicit models but, unlike
model D, they do not use the set of shifts; hence,
we will call them employee-based explicit models. When
the number of employees or activities increases, these
employee-based explicit models do not scale well
as performance degrades rapidly, mainly because of
symmetry issues (see §5.2 for experimental results).
In this paper, we show how to derive grammar-based
models with tractable size, allowing us to handle
large-scale problems with multiple activities. Assum-
ing that any feasible shift can be represented by a
word in a context-free language, we will show how

to derive polyhedron H from the context-free gram-
mar G defining the language. Moreover, we will show
that polyhedron H is integral, and therefore that Q
and D have equivalent linear programming (LP) relax-
ations. To the best of our knowledge, our approach
is the first implicit modeling technique that is able to
accurately formulate and efficiently solve multiactivity
shift scheduling problems.
The remainder of this paper is organized as follows.

In the next section, we present a literature review on
shift scheduling problems, and we introduce formal
languages and grammar theory. In §3, we describe our
modeling methodology using grammars to formulate
shift scheduling problems. In §4, we present theoret-
ical results relevant to our model; in particular, we
demonstrate that our model has the same LP relax-
ation as Dantzig’s (1954) set covering model. In §5, we
present comparative computational results on classi-
cal shift scheduling problems from Mehrotra et al.
(2000) and on a set of large-scale problem instances
with multiple activities.

2. Background Material
This section reviews the literature on shift scheduling
problems and presents basic notions of context-free
grammars that are relevant to our study.

2.1. Shift Scheduling
For many organizations, finding the best schedule
satisfying all their requirements and constraints is
an important but difficult task. Consequently, several
studies have been dedicated to this problem. Ernst
et al. (2004a, b) present an exhaustive overview of
models and methods for problems related to staff
scheduling and rostering.
Implicit formulations provide an interesting alter-

native to the explicit model D. Whereas the explicit
shift-based model uses one variable per shift (each
shift is defined by its starting and ending times, but
also by the placement of the breaks within the shift),
implicit formulations introduce the notion of shift
types, which are characterized only by starting and
ending times, giving no details about how breaks are
assigned within the shifts. These models represent the
number of employees assigned to each shift type and
to each break with different sets of variables. From an
optimal solution to such an implicit model, one can
retrieve the number of employees assigned to each
shift type and each break, and construct an optimal
set of shifts through a polynomial-time procedure.
Rekik et al. (2004) give such an implicit model

based on a transportation problem to assign breaks to
shifts. They show that the LP relaxation of their model
is equivalent to the LP relaxations of two other clas-
sical implicit formulations, namely, those proposed
by Aykin (1996) and Bechtolds and Jacobs (1990).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
Management Science 57(1), pp. 151–163, © 2011 INFORMS 153

Because Dantzig’s (1954) set covering model has the
same integrality gap as Aykin’s (1996) model, the LP
relaxations of these four models are equivalent. Rekik
et al. (2010) propose extensions to allow more flexibil-
ity in the definition of breaks. However, to this date,
we are not aware of any implicit formulation that
can accurately represent multiactivity shift scheduling
problems.
An alternative to existing explicit and implicit mod-

els is to use formal languages to model work regula-
tions. Côté et al. (2007) propose an IP model based on
a regular language, represented by a finite determin-
istic automaton, to formulate the constraints defining
a shift and to represent all feasible shifts using a net-
work flow formulation. Côté et al. (2009) extend these
results by using context-free grammars in modeling
shift scheduling problems. From a grammar describ-
ing work regulations, they generate an IP model based
on assignment variables yije that describe all feasible
shifts for each employee e. Because the number of
employees is bounded from below by maxi∈I

∑
j∈J bij �

this model generates a large number of variables.
Moreover, in the case where many employees are
alike, this model has symmetry issues.

2.1.1. Multiactivity Shift Scheduling Problems.
With the use of formal languages, many constraints
in the planning of shifts can be considered. In partic-
ular, these modeling methods can deal with contexts
where multiple work activities can be performed dur-
ing the same shift, each activity having its own labor
requirements. Compact models for multiactivity prob-
lems are not common in the literature. Among the few
papers addressing this topic, Loucks and Jacobs (1991)
and Ritzman et al. (1976) model the tour schedul-
ing problem (shift scheduling over one week) with
Boolean assignment variables specifying the number
of employees assigned to a given task at any given
time. Because such modeling approaches yield very
large IP formulations, both papers propose heuris-
tic methods to construct and improve the solutions.
Moreover, they do not place breaks or meals dur-
ing the shifts, nor do they handle regulations con-
cerning the transition between activities. Approaches
using column generation were suggested by Bouchard
(2004), Vatri (2001), and Demassey et al. (2006). The
first two propose approaches to schedule air traf-
fic controllers. Whereas Vatri (2001) uses a heuris-
tic method to build the schedule without taking into
account break placement, Bouchard (2004) extends
his work to include break placement and solves the
problem with a heuristic column generation approach.
Demassey et al. (2006) propose a column genera-
tion procedure based on constraint programming that
solves efficiently the LP relaxation of the problem
stated below in §5.2 for up to 10 work activities.
However, they report that branching to find integer

solutions is difficult and succeeds only for the smallest
instances. More recently, Lequy et al. (2009) addressed
another type of multiactivity shift scheduling prob-
lem where shifts and breaks are fixed a priori for
each employee and where work activities must then
be assigned to shifts. Each employee has a set of
skills that restricts the set of activities he can perform.
Lequy et al. (2009) present three integer program-
ming models and show good computational results
with a heuristic column generation method embedded
within a rolling horizon procedure.
In the following, we study some basic properties

of grammars and show how they can be used in the
context of shift scheduling problems.

2.2. Grammars
A context-free grammar defines a language over a
given alphabet by means of a set of rules called pro-
ductions. A production is a rule that specifies a sub-
stitution of symbols. These symbols are of two types:
the terminal symbols are letters of the alphabet, gen-
erally represented by lowercase letters, and the non-
terminal symbols designate a subsequence that could
be rewritten using the associated productions, gener-
ally represented by uppercase letters. More formally,
a production is represented as follows: 	 →
, where
	 is a nonterminal symbol and
 is a sequence of ter-
minal and/or nonterminal symbols. The productions
of a grammar can be used recursively to generate
new symbol sequences until only terminal symbols
are part of the sequence. A sequence of terminal sym-
bols is called a word.

Definition 1. A context-free grammar G is charac-
terized by a tuple ���N�P�S�, where
• � is an alphabet,
• N is a set of nonterminal symbols,
• P is a set of productions,
• S is the starting nonterminal.
A word, or sequence of letters from alphabet �, is

recognized by a grammar G if it can be generated by
successive applications of productions from G, start-
ing with nonterminal S.

In the following, we will use the term grammar to
refer to a context-free grammar, and we will assume
that, except when specified otherwise, all grammars
are in Chomsky normal form, meaning that all pro-
ductions are of the form X →
 where X ∈ N and
 ∈
�N × N� ∪ �. Note that this assumption is not restric-
tive because any context-free grammar can be con-
verted to Chomsky normal form; see Hopcroft et al.
(2001) for more information on formal languages.

Example 1. The following grammar G defines all
feasible shifts for a simple shift scheduling problem.
A shift must have a duration equal to the planning

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
154 Management Science 57(1), pp. 151–163, © 2011 INFORMS

Table 1 Derivation of Word wwbw from
Grammar G of Example 1

P CS

— S

S → XW XW

X → WB WBW
W → WW WWBW
W → w wWBW
W → w wwBW
B → b wwbW
W → w wwbw

horizon and contain one break of one period any-
where during the shift except at the first or the last
period. Work and break periods are respectively rep-
resented by letters w and b:

G = ��= �w�b��N = �S�X�W�B��P�S��

where P is S →XW� X →WB�W →WW �w�B→b�

where the symbol � specifies a choice of production.
The shifts wbw, wwwwwbw, and wbww, among others,
are recognized by G. The word wbwb is not recognized
by G. The word wwbw is obtained by the derivation
shown in Table 1, where P is the production used and
CS is the current sequence, obtained from the previous
sequence by applying the production on the left side.

A common way to illustrate the derivation of a
word from a grammar is to use a tree, called a parse
tree, where the root node is the starting nonterminal S,
the interior nodes are nonterminals, and leaves are
letters of the alphabet. A production X → YZ is repre-
sented by nodes Y and Z as left and right children of
node X, whereas X → a is represented by node X and
a unique child, leaf a. When listed from left to right,
the leaves form a word recognized by the grammar.

Figure 1 Parse Trees for Grammar G from Example 1 on Words of Length 4

S

X

X

S

W

W W W

W

WB BW W

w w w w w wb b

Figure 1 shows the two parse trees induced by gram-
mar G from Example 1 on words of length 4 (wwbw
and wbww).
A parse tree representing a word � of length n has

the following properties:
• An interior node and its children represent a pro-

duction in P .
• A leaf is associated with a position i ∈ 1� � � � �n�

in � and represents the letter from � taking place at
position i.
• Any interior node is the root of a tree inducing

a subsequence of �, starting at position i ∈ 1� � � � �n�
with length l ∈ 1� � � � �n − i + 1�.
Using these observations, the next developments

characterize a graph embedding all parse trees asso-
ciated with words of a given length.

2.2.1. The DAG � . In the following, we describe
a directed acyclic graph (DAG) � that encapsulates
all parse trees associated with words of a given
length n recognized by a grammar G = ���N�P�S�.
The DAG � has an and–or structure containing two
types of nodes: nodes O (the or-nodes) represent non-
terminals from N and letters from �, and nodes A (the
and-nodes) represent productions from P . Each node
is characterized by its symbol (nonterminal, letter, or
production) and the position and length of the subse-
quence it generates. We define O�

il the node associated
with nonterminal or letter � that generates a subse-
quence at position i of length l. Note that if � ∈ �,
the node is a leaf and l is equal to one. Also, � has a
root node described by OS

1n. Likewise, A��t
il is the tth

node representing production � generating a subse-
quence from position i of length l. There are as many
A��t

il nodes as there are ways of using � to generate a
sequence of length l from position i. We will refer to
this set as the (potentially empty) set A��� i� l�.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
Management Science 57(1), pp. 151–163, © 2011 INFORMS 155

The DAG � is built in such a way that a path from
one node to any other node alternates between or-
nodes O and and-nodes A. More precisely, the DAG
� has the following properties:
• Children of an or-node O�

il with l > 1, denoted
ch�O�

il �, are all and-nodes A��t
il such that �� � →
�

 ∈ �N × N� ∪ �, and t ∈ A��� i� l�.
• Each or-node O�

i1, where � is a nonterminal, has
only one child: ch�O�

i1� = A��1
i1 such that �� � → a,

where a ∈ �.
• Parents of an or-node O�

il , where � �= S is a non-
terminal, denoted par�O�

il �, are and-nodes of the form
A��t

jm such that �� X → �Z or �� X → Y�, where j ≤ i
and m ≥ l.

• Each and-node A��t
il with l > 1 such that

�� X → YZ has exactly two children: OY
ik and

OZ
i+k� l−k−1, where k < l − 1.
• Each and-node A��1

i1 such that �� X → a, where
a ∈ �, has only one child: Oa

i1.
• Each and-node A��t

il has only one parent: O�
il

such that �� � →
�
 ∈ �N × N� ∪ �, if l > 1, and
�� � → a� a ∈ �, if l = 1.
Figure 2 presents the DAG � associated with gram-

mar G from Example 1 on a word of length 4. It is
easy to verify the above properties on this DAG.
To derive any parse tree from � , we start at the

root OS
1n. We visit an or-node O�

il by selecting exactly
one child, which is necessarily an and-node. We visit
an and-node A��t

il by choosing all its children (exactly

Figure 2 DAG � for Grammar from Example 1 on a Word of Length 4

AS→XW,1
14 AS→XW, 2

14

AX→WB,1
13

AW→WW,1
12 AW→WW,1

32AX→WB,1
12

AW→w,1
11 AB→b,1

21 AW→w,1
21 AB→b,1

31 AW→w,1
31 AW→w,1

41

OX
12 OW

12 OW
32

OX
13

OS
14

OW
11 OB

21 OW
21 OB

31 OW
31 OW

41

Ow
11 Ob

21 Ow
21 Ob

31 Ow
31 Ow

41

two if l > 1, one otherwise). By traversing � in this
way until the only remaining unvisited nodes are
leaves, we obtain a parse tree associated with the
word defined by the leaves. Conversely, starting from
a given word �, we can traverse � backward in a str-
aightforward way to derive the parse tree associated
with �. In practice, � is built by a procedure suggested
by Quimper and Walsh (2007) inspired by the Cocke-
Younger-Kasami algorithm (see Hopcroft et al. 2001).

2.2.2. Grammar-Based IP Model. Using the struc-
ture of the DAG � , Côté et al. (2009) present a system
of linear equations in 0-1 variables that allow the iden-
tification of any word recognized by a given gram-
mar G. To each node O�

il and A��t
il in � are associated

0-1 variables u�
il and v��t

il , respectively. If we denote by
L the set of leaves in � , these equations are as follows:

u�
il = ∑

A��t
il ∈ ch�O�

il �

v�� t
il � ∀O�

il ∈ O\L� (6)

u�
il = ∑

A��t
il ∈par�O�

il �

v�� t
il � ∀O�

il ∈ O\OS
1n� (7)

u�
il ∈ 0�1�� ∀O�

il ∈ O� (8)

v��t
il ∈ 0�1�� ∀A��t

il ∈ A� (9)

Constraints (6) ensure that if variable u�
il is equal

to one, exactly one of the variables associated with
its children must be equal to one. Similarly, con-
straints (7) ensure that if variable u�

il is equal to one,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
156 Management Science 57(1), pp. 151–163, © 2011 INFORMS

exactly one of the variables associated with its par-
ents must be equal to one. Consequently, when we
set uS

1n = 1, if this system of equations has a solution,
then, in any solution, the variables equal to one form
a parse tree associated with a word of length n recog-
nized by G. Conversely, let � be a word of length n
on alphabet �. If we set to one the u

j
i1 variables that

form � when the letters j are listed from left to right,
then, if this system of equations has a solution, � is
recognized by G, and the variables of the solution set
to one form a parse tree associated with word �.
We can rewrite Equations (6) and (7) as follows:

uS
1n = ∑

A��t
1n ∈ ch�OS

1n�

v�� t
1n � (10)

∑
A��t

il ∈par�O�
il �

v�� t
il = ∑

A��t
il ∈ ch�O�

il �

v�� t
il �

∀O�
il ∈ O\L ∪ OS

1n��� (11)

u
j
i1 = ∑

A��t
i1 ∈par�O

j
i1�

v�� t
i1 � ∀O

j
i1 ∈ L� (12)

This system of equations presents a structure sim-
ilar to network flow conservation equations, but the
two systems are different. Indeed, a solution to Equa-
tions (10)–(12) does not specify a path in a network,
but rather a tree in the DAG � , because any variable
associated with an and-node that is equal to one in a
solution will also have its two children with variables
equal to one. Hence, (10)–(12) are not flow conserva-
tion equations. Furthermore, if we represent the sys-
tem (10)–(12) in matrix notation, we can easily show
that the corresponding matrix is not totally unimod-
ular, contrary to the incidence matrix of a network,
which is used to represent flow conservation equa-
tions. In spite of this, Pesant et al. (2009) have shown
(see §4) that the polyhedron defined by (10)–(12) is
integral, like the polyhedron defined by flow conser-
vation equations.

3. Grammar-Based Model for
Shift Scheduling

As explained in Côté et al. (2009), the system of Equa-
tions (10)–(12) can be used in the context of shift
scheduling problems, where the constraints defining
any feasible shift are represented by a grammar G; i.e.,
each word � recognized by grammar G corresponds
to a feasible shift s ∈ �. In this context, the number of
periods �I � corresponds to n, the length of any given
word recognized by G, whereas the set of activities J
corresponds to �, the letters of the alphabet.
Côté et al. (2009) describe an IP model based on

this correspondance, using assignment variables yije,
that describe all feasible shifts for each employee e.
But, as explained in §2.1, when employees are similar,

this model exhibits a lot of symmetry, which makes
it impractical to solve large-scale instances. Assuming
all employees can be assigned to the same shifts, we
introduce here a new grammar-based IP model that
will not suffer from the same performance issues.
In Equations (10)–(12), each variable is binary and

specifies whether or not its corresponding node is
part of the parse tree selected to generate a word. In
the new model, each variable is a nonnegative inte-
ger that specifies how many parse trees the associated
node is part of. Because we minimize an objective
function with nonnegative costs, the integer variables
do not need to be bounded from above.
As in the introduction, let yij denote the number of

employees assigned to activity j ∈ J at period i ∈ I . We
can replace the leaf variables u

j
i1 by the variables yij .

Model Q presented in the introduction can now be
explicitly stated as follows:

f �Q� =min
∑
i∈I

∑
j∈J

cijyij �

yij ≥ bij� ∀ i ∈ I� j ∈ J � (13)

uS
1n = ∑

A��t
1n ∈ ch�OS

1n�

v�� t
1n � (14)

∑
A��t

il ∈par�O�
il �

v�� t
il = ∑

A��t
il ∈ ch�O�

il �

v�� t
il �

∀O�
il ∈ O\L ∪ OS

1n��� (15)

yij = ∑
A��t

i1 ∈par�Oj
i1�

v�� t
i1 � ∀ i ∈ I� j ∈ J � (16)

uS
1n ≥ 0 and integer� (17)

v��t
il ≥ 0 and integer� ∀A��t

il ∈ A� (18)

yij ≥ 0 and integer� ∀ i ∈ I� j ∈ J � (19)

Once Q is solved, an implicit solution is obtained.
To find the individual schedules from this solution,
we traverse the DAG � from the root to the leaves
visiting the nodes with value greater than zero. Each
time a node is evaluated, its value is decreased by
one. When a leaf node is reached, its value is inserted
to the current schedule at the right position (see
the appendix for the detailed algorithm). Model Q
ensures that uS

1n words recognized by grammar G can
be extracted from the implicit solution. In the context
of shift scheduling, variable uS

1n = k thus represents
the total number of employees needed to perform all
required shifts. The complexity of the algorithm used
to extract the explicit set of shifts from the optimal
implicit solution is O�kn3�G��, where n is the sequence
length, and �G� is the number of productions in gram-
mar G. In practice, the running time to perform this
algorithm is negligible compared to the time neces-
sary to solve model Q.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
Management Science 57(1), pp. 151–163, © 2011 INFORMS 157

4. Theoretical Properties of
Grammar-Based Models

In this section, we study the polyhedral properties
of the implicit grammar-based model Q and compare
it with other models from the literature. First, using
the notation from the introduction, we denote by H
the polyhedron defined by Equations (14)–(16) along
with nonnegativity constraints on all variables. Our
first result states that this polyhedron is integral, thus
extending the result derived in Pesant et al. (2009) for
a similar polyhedron defined over 0-1 variables.

Theorem 1. H is an integral polyhedron.

Proof. To simplify the notation, we denote H using
matrix notation as follows: H = z ≥ 0 � Mz = b�. Now,
let d be any arbitrary costs associated with vari-
ables z. The result will follow if we can prove that
there always exists an integer optimal solution to the
linear program: mindz � z ∈ H�. For this, it suffices
to construct an integer point zI in H that satifies
the complementary slackness conditions: ��∗M − d�
zI = 0, where �∗ is an optimal solution to the dual
problem max�b � �M ≤ d�.
Let z∗ be an optimal solution to the linear program,

and let �∗ be the corresponding dual solution. We
assume that m = �uS

1n� > 0 (otherwise, if m = 0, zI = 0
is an integer point in H satisfying the complemen-
tary slackness conditions). Our objective is to con-
struct an integer solution zI such that for every k for
which �∗Mk < dk, we have zI

k = 0. This condition can
be easily maintained by enforcing that zI

k = 0 when-
ever z∗

k = 0.
First, set uS

1n = m in zI . By definition of H , because
uS
1n > 0 in z∗, there exists at least one variable corre-

sponding to a child of root node OS
1n that has a value

greater than 0 in z∗, say z∗
k, corresponding to node

A��t
1n , with �� X → YZ. We continue our construction

by fixing zI
k = m. From constraints (15), because z∗

k > 0,
the two children of A��t

1n , say OX
1k and OY

k+1�n−k, have
at least one child each with a corresponding value
greater than 0, say z∗

k1
and z∗

k2
. We then fix zI

k1
= m and

zI
k2

= m. We continue this process, following the chil-
dren of the nodes and setting them to m in zI , until
we reach the leaves of the DAG � .
The variables set to m in zI form a tree in the DAG �

that satisfies constraints Mz = b by construction. Fur-
thermore, because we used only variables that were
already set to a value greater than 0 in the LP optimal
solution z∗, we know that zI satisfies the complemen-
tary slackness conditions with respect to �∗. There-
fore, there always exists an optimal integer solution to
the linear program mindz � z ∈ H�, with arbitrary d;
i.e., polyhedron H is integral. �

From this result, we observe that integrality
constraints (17) and (18) are redundant in model Q.
However, in practice, we found that leaving these

constraints in the formulation helps the IP solver to
further presolve the model and, overall, speeds up
the solution process. Consequently, the experimenta-
tions in §5 were performed by leaving the integrality
constraints in the models.
The next theorem uses the previous result to estab-

lish the equivalence between the LP relaxations of
models Q and D, Dantzig’s (1954) set covering for-
mulation presented in the introduction.

Theorem 2. Q and D have equivalent LP relaxations.

Proof. The proof is direct using Lagrangean dual-
ity arguments. Let �ij ≥ 0 denote Lagrangean multipli-
ers associated with the requirement constraints, (1) in
model D and (3) in model Q. Also, let fLP�M� denote
the optimal objective value of the LP relaxation of a
model M . We then have

fLP�Q�

=max
�≥0

{∑
i∈I

∑
j∈J

�ijbij +min
{∑

i∈I

∑
j∈J

�cij −�ij �yij

∣∣∣ �y�v�∈H

}}

=max
�≥0

{∑
i∈I

∑
j∈J

�ijbij +min
{∑

i∈I

∑
j∈J

�cij −�ij �yij

∣∣∣ �y�v�∈H��y�v� integer
}}

=max
�≥0

{∑
i∈I

∑
j∈J

�ijbij +min
{∑

i∈I

∑
j∈J

�cij −�ij �

(∑
s∈�

�ijsxs

)

∣∣∣xs ≥0 and integer
}}

=max
�≥0

{∑
i∈I

∑
j∈J

�ijbij +min
{∑

s∈�

(
cs −

∑
i∈I

∑
j∈J

�ij�ijs

)
xs

∣∣∣xs ≥0 and integer
}}

=max
�≥0

{∑
i∈I

∑
j∈J

�ijbij +min
{∑

s∈�

(
cs −

∑
i∈I

∑
j∈J

�ij�ijs

)
xs

∣∣∣xs ≥0
}}

=fLP�D�� �

Because Dantzig’s (1954) set covering model yields
the same integrality gap as the models suggested in
Aykin (1996), Bechtolds and Jacobs (1990), and Rekik
et al. (2004) (see §2), Theorem 2 implies that the LP
relaxation of Q is also equivalent to the LP relaxations
of these other implicit models. Note, however, that to
the best of our knowledge, these models cannot be
extended to the multiactivity case.

5. Computational Experiments
The objective of our computational experiments is to
evaluate the efficiency of our new implicit grammar-

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
158 Management Science 57(1), pp. 151–163, © 2011 INFORMS

based model, when processed by a state-of-the-art
IP solver. For this purpose, we will first compare
model Q to the shift-based explicit model D and to
another implicit model, attributable to Aykin (1996),
under the same conditions. To compare ourselves to
these other modeling approaches, we will first use
instances from the literature, all having one work
activity. Then, we will present computational results
on large-scale instances with multiple work activi-
ties and compare our approach to employee-based
explicit models tested by Côté et al. (2009) on the same
instances.

5.1. Shift Scheduling with Multiple Rest Breaks,
Meal Breaks, and Break Windows

In this section, we compare our model with a state-
of-the-art implicit model, proposed by Aykin (1996),
and to the shift-based explicit model D on a large
set of shift scheduling instances used by Mehrotra
et al. (2000) from shift specifications and labor require-
ments reported by Aykin (1996), Henderson and Berry
(1976), Segal (1974), and Thompson (1995). The prob-
lems differ from one another in the labor require-
ments, the set of allowed shifts, the planning horizon,
the number of breaks, the break windows, the cost
structures, and whether the problem is cyclic or not.
We refer to Mehrotra et al. (2000) for details on shift
generation rules. Here, we present a general descrip-
tion of the three classes of problems studied.

5.1.1. Thompson Set. Thompson (1995) presents
two sets of noncyclic problems. The first set are prob-
lems on 15-hour demand patterns. Shifts either allow
one break or none depending on their length. The sec-
ond set are problems on 20-hour demand patterns.
Shifts allow one break of one hour. The planning
horizons are divided into periods of 15 minutes, and
shifts can start at any period that allows them to fin-
ish within the planning horizon. The break windows
depend on the duration of the shifts, and the costs are
proportional to the number of work hours in a shift.

5.1.2. Aykin Set. Aykin (1996) presents a set of
cyclic problems, with shifts containing exactly three
breaks and differing only in the length of the break
windows. The planning horizon is 24 hours divided
into periods of 15 minutes. All shifts have the same
length and must start on the hour or the half-hour.
The cyclic case is handled in the same way in the
three modeling approaches. The planning horizon is
extended to allow shifts to start at any time in the
original planning horizon.

5.1.3. Mehrotra Set. Mehrotra et al. (2000) use the
same shift generation rules as Aykin (1996) but allow
the shifts to have different durations and to start

at any period. The problems were tested as cyclic
problems using the same labor requirements as in the
Aykin set.

5.1.4. Definition of the Grammars. The following
presents the grammars used for each set of instances.
For the sake of clarity, the grammars are not stated in
Chomsky normal form. In the sets of productions P ,
→�min�max� restricts the subsequences generated with a
given production to have a length between min and
max periods.
Grammar for the Thompson Set. Let � be the set of

feasible shift types. Let bwsl and bwel be the break
window starting and ending periods, respectively, for
shift type l ∈ �. Let sll and bll be the shift and break
lengths, respectively, for shift type l ∈ �.

Then�

G= ��= �w�b�r��N = �S�W�R�Al�Bl�Ml ∀l∈���P�S��

where w is a period of work, b is a break period, and
r is a rest period. Define P as follows:

S → RAlR � AlR � RAl ∀ l ∈ �� W → Ww � w�

Al →�sll�sll�
MlW ∀ l ∈ �� R → Rr � r�

Ml →�bwsl+bll�bwel+bll�
WBl ∀ l ∈ ��

Bl → bbll � ∀ l ∈ ��

Grammar for the Aykin and Mehrotra Sets. Let � be
the set of feasible shift types. Note that in the Aykin
(1996) set � contains only one element because all
shifts have the same length. Let bwsn

l and bwen
l be the

break window starting and ending periods, respec-
tively, for shift type l ∈ � and break n ∈ 1�2�3�.
Let sll and bln

l be the length of the shift and of the
breaks n ∈ 1�2�3�, respectively, for shift type l ∈ �.
Then G = �� = �w�b� r� and N = �S�W�R�Bn

l ∀n ∈
1�2�3��Al�MA

l �MB
l �MC

l ∀ l ∈ ���P�S�, where w is a
period of work, b is a break period, and r is a rest
period. Define P as follows:

S → RAlR � AlR � RAl ∀ l ∈ ��

Bn
l → bblnl ∀ l ∈ ��n ∈ 1�2�3��

Al →�sll�sll�
MA

l W ∀ l ∈ �� W → Ww � w�

MA
l →�bws3l +bl3l �bwe3l +bl3l � MB

l WB3
l ∀ l ∈ �� R → Rr � r�

MB
l →�bws2l +bl2l �bwe2l +bl2l � MC

l WB2
l ∀ l ∈ ��

MC
l →�bws1l +bl1l �bwe1l +bl1l � WB1

l ∀ l ∈ ��

5.1.5. Results. We compare our model on these
instances to the shift-based explicit model D derived
from Dantzig (1954) and to the implicit model from
Aykin (1996). We generated the three IP models
and solved them with CPLEX 12.1 with the default

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
Management Science 57(1), pp. 151–163, © 2011 INFORMS 159

Table 2 Number of Instances Solved to Optimality Within the
Four-Minute Time Limit

Thompson Thompson
Models/Sets 15-h (21) 20-h (80) Aykin (16) Mehrotra (16)

Implicit grammar 21 75 16 16
Aykin (1996) 21 78 16 16
Dantzig (1954) 21 76 16 16

parameters. As in Mehrotra et al. (2000), we gave a
four-minute time limit to find the optimal solution.
Experiments were run on a 2.3 GHz AMD Opteron
with 3 GB of memory.
Table 2 shows the number of instances solved to

optimality within the four-minute time limit by the
three models on each set. The numbers in parentheses
are the number of available instances in each set.
For the instances solved to optimality by all three

models, Table 3 presents a summary of the model
sizes and solution statistics. Denoted by �C�, �V �, and
�NZ� are the number of constraints, variables, and
nonzeroes in the models, respectively; Nit, Nnodes,
and Time�s� give the average values of the number of
simplex iterations, the number of nodes, and the time
(in seconds) needed to solve the instances to optimal-
ity, respectively. The average IP gap for the instances
that were not solved to optimality by at least one of
the three models is represented by Gap(%); i.e., Gap=
100�ZIP −ZLP�/ZIP where ZIP and ZLP are, respectively,
the best upper and lower bounds after the time limit
has been reached.
Tables 2 and 3 show that CPLEX 12.1 obtains com-

parable results on the three models. However, overall,
our model appears less adapted to these instances.
For instances in the Aykin and the Mehrotra sets,
our model is less efficient than Aykin’s, although it

Table 3 Summary for the Instances Solved to Optimality

Model �C� �V � �NZ � Nit Nnodes Time �s� Gap�%�

Thompson set for 15-hour demand curves
Implicit grammar 6�418 9�686 28�481 2�511 42 0�72 —
Aykin (1996) 421 3�673 27�521 2�994 17 0�63 —
Dantzig (1954) 60 3�312 85�977 528 51 0�34 —

Thompson set for 20-hour demand curves
Implicit grammar 13�432 21�513 63�768 11�865 139 7�14 0�108
Aykin (1996) 850 8�914 66�742 15�465 293 7�65 0�012
Dantzig (1954) 80 8�144 223�549 1�451 170 2�98 0�045

Aykin (1996) set
Implicit grammar 5�703 36�184 106�902 1�485 5 1�67 —
Aykin (1996) 274 697 3�396 259 2 0�09 —
Dantzig (1954) 130 4�681 149�760 423 0 0�70 —

Mehrotra et al. (2000) set
Implicit grammar 11�201 16�488 47�683 6�695 14 3�97 —
Aykin (1996) 1�572 6�961 33�955 1�971 2 0�93 —
Dantzig (1954) 132 46�801 1�497�113 617 7 8�93 —

finds the optimal solution for all instances within
the time limit, as the two other models do. On the
Thompson set, with Aykin’s and Dantzig’s models,
more instances are solved to optimality than with our
model. Note that the average gap for the instances
that were not solved to optimality by at least one
model is very small.
Mehrotra et al. (2000) present a branch-and-price

approach involving specialized branching rules for
solving Dantzig’s set covering formulation. They com-
pare their method with Aykin’s model solved with
CPLEX 4.0 on the same instances stated above. The
results show that their method is generally superior.
Because CPLEX has evolved considerably since these
experiments were performed, it is difficult to deduce
from these results a fair comparison between their
approach and our model solved with CPLEX 12.1.

5.2. Shift Scheduling with Multiple Rest and
Meal Breaks, and Multiple Work Activities

This section presents a shift scheduling problem for
a retail store, allowing up to 10 different work activi-
ties. We present the specifications of the problem and
first compare our model with Dantzig’s (1954) model
and an extentsion of Aykin’s (1996) model suggested
in Rekik et al. (2010), allowing to model work-stretch
duration restrictions for instances with one work activ-
ity. Then, we report solution times from Côté et al.
(2009) on the instances with up to two work activities
and compare them with the results from our model.

5.2.1. Problem Definition.
1. The planning horizon is 24 hours divided into

96 periods of 15 minutes.
2. A shift may start at any period of the day allow-

ing enough time to complete its duration during the
planning horizon.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
160 Management Science 57(1), pp. 151–163, © 2011 INFORMS

3. A shift must cover between three hours and
eight hours of work activities.
4. If a shift covers at least six hours of work activ-

ities, it must have two 15-minute breaks and a lunch
break of one hour.
5. If a shift covers less than six hours of work activ-

ities, it must have one 15-minute break, but no lunch.
6. If performed, the duration of a work activity is

at least one hour (four consecutive periods).
7. A break (or lunch) is necessary between two dif-

ferent work activities.
8. Work activities must be inserted between breaks,

lunch, and rest stretches.
9. For each period of the planning horizon, labor

requirements for every work activity are available.
10. Overcovering and undercovering are allowed.

Costs are associated with overcovering and undercov-
ering the requirements of a work activity at a given
period.
11. The cost of a shift is the sum over every period

of the costs of all work activities performed in the
shift.

5.2.2. Definition of the Grammar. The following
presents the grammar used for this problem. For the
sake of clarity, the grammar is not stated in Chomsky
normal form.

G = (
� = �aj ∀ j ∈ A�b� l� r��

N = �S� F �P�W�Aj ∀ j ∈ A�B�L�R��P�S
)
�

where A is the set of work activities, aj is a period
of work on activity j ∈ A, b is a break period, l is a
lunch period, and r is a rest period. In P , →�min�max�

restricts the subsequences generated with a given pro-
duction to have a length between min and max peri-
ods. Define P as follows:

S → RFR � FR � RF � RPR � PR � RP� B → b�

F →�30�38� WBWLWBW � WLWBWBW � WBWBWLW�

L → llll�

P →�13�24� WBW� R → Rr � r�

W →�4�� Aj ∀ j ∈ A�

Aj → Ajaj � aj ∀ j ∈ A�

5.2.3. Results. To compare the different models
for this problem, we generated the IP models repre-
senting these rules and solved them with CPLEX 12.1
with the default parameters. We gave a one-hour time
limit to find the optimal solution. Experiments were
run on a 3.20 GHz Pentium 4.
First, we compare Dantzig’s (1954) model and the

extension of Aykin’s (1996) model suggested in Rekik
et al. (2010), called the Aykin/Rekik model, to our

model on 10 instances, numbered from 1 to 10, with
one work activity, which differ only in their labor
requirements. Table 4 presents the results. The number
of constraints, variables, and nonzeroes are denoted
�C�, �V �, and �NZ�, respectively, in the models. Note
that the differences in the number of variables between
the instances for the same model come from the
slack variables introduced to allow overcovering and
undercovering of requirements constraints. For peri-
ods where no employees are required, we suppose that
the retail store is closed and that no work should be
scheduled. Denoted by Nit, Nnodes, and Time�s� are
the number of simplex iterations, nodes, and the solu-
tion times (in seconds), respectively, for the instances
solved to optimality within the time limit; otherwise
the sign “>” is used.
The comparison between the three models shows

that Dantzig’s (1954) model tends to be less com-
petitive on problems with a large number of shifts.
In the one-activity case, solving the entire model
with an IP solver is still manageable, but both the
implicit grammar models and Aykin/Rekik models
are solved more rapidly. Our model succeeds in prov-
ing optimality for 9 out of 10 instances, as does the
Aykin/Rekik model, but does so in less time for 6 out
of these 9 instances. Note also that the number of vari-
ables in the implicit grammar model is smaller than
in the two other models.
Table 5 shows our results on the multiactivity

instances. We ran experiments on our model on
instances ranging from 2 to 10 work activities (NbAct).
For each instance, we tested 10 different labor require-
ments. Column NbShifts gives the number of fea-
sible shifts for each of the problems, which would
be the number of variables needed by Dantzig’s
(1954) set covering model; N opt gives the number of
instances solved to optimality within the one-hour
time limit; and �C�, �V �, and Time�s� are the aver-
age number of constraints and variables, and solu-
tion times (in seconds), respectively, for the instances
solved to optimality.
To our knowledge, no other implicit formulations

are capable of modeling multiactivity instances. To
solve Dantzig’s (1954) model on these problems, one
must consider column generation methods, because
the number of feasible shifts is very large. Demassey
et al. (2006) present a column generation approach for
these problems. However, their method does not suc-
ceed in finding optimal solutions, even for the single-
activity instances. As for our modeling approach, the
multiactivity problems can easily be handled with a
few more productions than in the one-activity case,
and results show that they can rapidly be solved on
almost all available instances. Note that the growth in
the number of constraints and variables when increas-
ing the number of work activities is much slower than
the increase in the number of feasible shifts.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
Management Science 57(1), pp. 151–163, © 2011 INFORMS 161

Table 4 Model Comparison on the One-Activity Problem

No. �C� �V � �NZ � Nit Nnodes Time �s�

Implicit grammar model
1 16�191 66�621 198�517 137 0 0�27
2 16�191 66�653 198�549 2�585 0 12�52
3 16�191 66�653 198�549 817�435 702 767�75
4 16�191 66�637 198�533 61�515 201 16�44
5 16�191 66�629 198�525 1�219 0 0�45
6 16�191 66�629 198�525 975 0 0�36
7 16�191 66�637 198�533 153�688 544 35�13
8 16�191 66�653 198�549 > > >

9 16�191 63�068 198�525 9�027 250 1�31
10 16�191 66�637 198�533 1�767 0 0�73

Aykin (1996)/Rekik et al. (2010) model
1 50�007 78�247 930�056 593 0 2�47
2 50�007 78�279 930�088 248�660 389 371�76
3 50�007 78�279 930�088 324�511 673 461�69
4 50�007 78�263 930�072 13�868 235 5�17
5 50�007 78�255 930�064 647 0 2�22
6 50�007 78�255 930�064 882 0 2�20
7 50�007 78�263 930�072 6�015 175 3�41
8 50�007 78�279 930�088 > > >

9 50�007 78�255 930�064 31�460 360 12�38
10 50�007 78�263 930�072 1�943 0 2�59

Dantzig (1954) model
1 96 845�176 246�057 23 0 24�58
2 96 845�208 246�057 > > >

3 96 845�208 246�057 11�808 728 1�824�11
4 96 845�192 246�057 1�180 141 52�06
5 96 845�184 246�057 85 0 29�86
6 96 845�184 246�057 30 0 29�44
7 96 845�192 246�057 7�455 1�209 51�23
8 96 845�208 246�057 > > >

9 96 845�184 246�057 3�769 280 35�68
10 96 845�192 246�057 154 0 32�86

5.2.4. Comparison with Existing IP Formulations
Based on Formal Languages. Table 6 presents the
times reported by Côté et al. (2009) to solve the one-
and two-work-activity instances with two employee-
based explicit formulations, the IP regular model,
based on a finite automaton, and the IP grammar
model, based on a context-free grammar. In both
cases, 0-1 assignment variables for each employee are
used, instead of the general integer variables used in
model Q. These experiments were run on a 2.4 GHz
Dual AMD Opteron Processor 250 with 3 GB of RAM,

Table 5 Multiactivity Problems with the Implicit Grammar Model

NbAct NbShifts �C� �V � Time �s� Nopt (10)

2 13�404�928 18�068 69�893 409�07 10
3 67�752�783 19�945 73�152 205�38 9
4 214�010�944 21�822 76�417 300�47 10
5 522�350�575 23�699 79�688 146�16 10
6 1�082�991�744 25�576 82�961 213�79 10
7 2�006�203�423 27�453 86�246 230�88 10
8 3�422�303�488 29�330 89�492 257�06 10
9 5�481�658�719 31�207 92�731 289�08 10
10 8�354�684�800 33�084 96�026 516�74 10

using CPLEX 10.0 and a time limit of 3,600 seconds.
To perform a fair comparison, we also used CPLEX
10.0 to solve our implicit grammar models. The table
reports the time in seconds to obtain an integer solu-
tion with a relative IP gap smaller or equal than 1%.
The symbol “>” represents an instance for which that
gap could not be reached within the time limit. The
implicit grammar column shows the time needed by
the implicit grammar model to reach the 1% relative
IP gap limit.
Table 6 illustrates that the two employee-based

explicit formulations suffer from scalability issues
as the number of work activities grows. Observe
that the implicit grammar model shows comparable
solution times for both classes of instances. For the
one-activity problem, the IP regular model is much
faster than the implicit grammar model on 3 out of
10 instances. However, for the instances with two
work activities, the implicit grammar model solves
all instances more rapidly than the two other mod-
els and succeeds in solving more instances within the
time limit. It is interesting to note that, on almost
all instances, the IP regular model has better solution

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
162 Management Science 57(1), pp. 151–163, © 2011 INFORMS

Table 6 Comparison of Solution Times (Seconds) Between
Employee-Based Explicit Formulations and the Implicit
Grammar Model on the One- and Two-Activity Instances
to Obtain a Near-Optimal Solution (Gap ≤ 1%) in
Less Than 3,600 Seconds

No. IP regular IP grammar Implicit grammar

One-activity instances
1 1�03 7�42 0�26
2 40�09 > 110�88
3 64�64 > 75�25
4 46�39 1�850�38 2�75
5 14�03 322�57 0�48
6 3�28 130�21 0�34
7 5�99 1�662�75 2�71
8 131�77 > 2�642�12
9 16�14 1�015�10 1�18
10 20�22 1�313�28 0�80

Two-activity instances
1 228�07 2�826�40 1�27
2 2�870�20 1�952�58 4�12
3 1�541�15 > 81�91
4 169�96 > 16�27
5 > > 2�59
6 1�288�56 > 51�16
7 29�94 > 0�60
8 > 325�08 36�20
9 > > >

10 1�108�23 > 4�99

times than the explicit IP grammar model, from which
we built the implicit model presented in this paper.

6. Conclusion
In this paper, we presented a new implicit IP model for
solving multiactivity shift scheduling problems. This
model differs significantly from the models proposed
in the literature because our modeling approach uses
context-free grammars to represent the constraints
defining feasible shifts. This model yields the same LP
relaxation bound as the classical set covering model
by Dantzig (1954) and the other well-known implicit
models in the literature, i.e., Aykin (1996), Bechtolds
and Jacobs (1990), and Rekik et al. (2004).
Our experiments showed that the solution times for

our model are comparable with the solution times for
Aykin’s (1996) model on one-activity shift schedul-
ing instances from the literature, and slightly superior
to an extension of Aykin’s (1996) model suggested
by Rekik et al. (2004) on large-scale one-activity
instances. We also showed that our model can be
solved to optimality efficiently on instances with up
to 10 work activities. To the best of our knowledge,
no other technique in the literature can solve multiac-
tivity instances efficiently.
An interesting feature of our formulation is that

the objective function allows many types of cost
structures, contrary to classical implicit formulations.
In model Q, costs are associated with activities and

periods, but one can modify the objective function
to have costs on productions (

∑
A��t

il ∈A cost�v�� t
il �v�� t

il),
on the root node (minimizing the root-node variable
would be equivalent to minimizing the number of
employees needed), or even on subsequences. Indeed,∑

t v�� t
il corresponds to the number of words having a

subsequence of length l starting in position i gener-
ated from production �. A subsequence can be a shift
or a part of a shift, such as a task. One could be inter-
ested in tracking a task corresponding to a consecu-
tive assignment of work activities and do so by using
the corresponding variables v from A. The same idea
can be used to model switchover, ramp-up and ramp-
down effects. Therefore, the implicit grammar-based
model can easily be extended to handle problems
that require the simultaneous assignment of tasks and
activities.

Acknowledgments
This work was supported by a grant from the Fonds
Québécois de Recherche sur la Nature et les Technologies.
The authors thank Claude-Guy Quimper for his useful com-
ments on their work. They also thank two anonymous, ref-
erees, whose constructive comments and questions helped
them to improve this paper.

Appendix

Schedule Construction
In the following, V �N� is initialized to the value of the vari-
able associated with node N in the implicit solution; cl�N �
and cr �N � are the left and right children of and-node N ;
c�N � is the set of children of or-node N ; schedule is the
schedule resulting from the algorithm, i.e., the shift assigned
to each employee; and L is the set of leaves in the DAG.

Algorithm 1 (Extracting detailed schedules from an implicit
grammar solution)

Data: Solution from an implicit grammar model
Result: Detailed schedule
Stack K = �;
Array schedule�V �OS

1n��n�;
e = 0;
while V �OS

1n� > 0 do
V �OS

1n� = V �OS
1n� − 1;

Choose N ∈ c�V �OS
1n�� � V �N� > 0�;

Push N on K;
while K �= � do

Pop N from K;
V �N� = V �N� − 1;
if cl�N � ∈ L, cl�N � corresponds to O

j
i1 then

schedule�e� i� = j ;
else

Choose Nl ∈ c�cl�N �� � V �Nl� > 0�;
Push Nl on K;
Choose Nr ∈ c�cr �N �� � V �Nr� > 0�;
Push Nr on K;

end
end

e = e + 1;
end

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Côté, Gendron, and Rousseau: Grammar-Based IP Models for Multiactivity Shift Scheduling
Management Science 57(1), pp. 151–163, © 2011 INFORMS 163

References
Aykin, T. 1996. Optimal shift scheduling with multiple break win-

dows. Management Sci. 42(4) 591–602.
Bechtolds, S., L. Jacobs. 1990. Implicit optimal modeling of exible

break assigments. Management Sci. 36(11) 1339–1351.
Bouchard, M. 2004. Optimisation des pauses dans le probléme de

fabrication des horaires avec quarts de travail. Master’s thesis,
École Polytechnique de Montréal, Montreal.

Côté, M.-C., B. Gendron, L.-M. Rousseau. 2007. Modeling the reg-
ular constraint with integer programming. Proc. CPAIOR 2007,
Lecture Notes in Computer Science, Vol. 4510. Springer-Verlag,
Berlin, 29–43.

Côté, M.-C., B. Gendron, C.-G. Quimper, L.-M. Rousseau.
2009. Formal languages for integer programming model-
ing of shift scheduling problems. Constraints, ePub ahead
of print October 27, http://www.springerlink.com/content/
h5803278l5364571/.

Dantzig, G. 1954. A comment on “Edie’s traffic delay at toll booths.”
J. Oper. Res. Soc. Amer. 2(3) 339–341.

Demassey, S., G. Pesant, L.-M. Rousseau. 2006. A cost-regular based
hybrid column generation approach. Constraints 11(4) 315–333.

Edie, L. 1954. Traffic delays at toll booths. J. Oper. Res. Soc. Amer.
2(2) 107–138.

Ernst, A., H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier. 2004a.
An annotated bibliography of personnel scheduling and ros-
tering. Ann. Oper. Res. 127(1–4) 21–144.

Ernst, A., H. Jiang, M. Krishnamoorthy, D. Sier. 2004b. Staff
scheduling and rostering: A review of applications, methods
and models. Eur. J. Oper. Res. 153(1) 3–27.

Henderson, W. B., W. J. Berry. 1976. Heuristic methods for tele-
phone operator shift scheduling: An experimental analysis.
Management Sci. 22(12) 1372–1380.

Hopcroft, J., R. Motwani, J. D. Ullman. 2001. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, Boston.

Lequy, Q., M. Bouchard, G. Desaulniers, F. Soumis. 2009. Assigning
multiple activities to work shifts. Technical report, Les Cahiers
du GERAD G-2009-86, GERAD, Montreal.

Loucks, J. S., F. R. Jacobs. 1991. Tour scheduling and task assign-
ment of a heterogeneous work force: A heuristic approach.
Decision Sci. 22(4) 719–739.

Mehrotra, A., K. Murphy, M. Trick. 2000. Optimal shift scheduling:
A branch-and-price approach. Naval Res. Logist. 47(3) 185–200.

Pesant, G., C.-G. Quimper, L.-M. Rousseau, M. Sellmann. 2009. The
polytope of context-free grammar constraints. Proc. CPAIOR
2009, Lecture Notes in Computer Science, Vol. 5547. Springer-
Verlag, Berlin, 223–232.

Quimper, C.-G., T. Walsh. 2007. Decomposing global grammar con-
straints. Proc. of CP 2007, Lecture Notes in Computer Science,
Vol. 4741. Springer-Verlag, Berlin, 590–604.

Rekik, M., J.-F. Cordeau, F. Soumis. 2004. Using Benders decom-
position to implicitly model tour scheduling. Ann. Oper. Res.
128(1–4) 111–133.

Rekik, M., J.-F. Cordeau, F. Soumis. 2010. Implicit shift scheduling
with multiple breaks and work stretch duration restrictions.
J. Scheduling 13(1) 49–75.

Ritzman, L., L. J. Krajewski, M. J. Showalter. 1976. The disaggre-
gation of aggregate manpower plans. Management Sci. 22(11)
1204–1214.

Segal, M. 1974. The operator-scheduling problem: A network-flow
approach. Oper. Res. 22(4) 808–823.

Thompson, G. 1995. Improved implicit optimal modeling of the
labor shift scheduling problem. Management Sci. 41(4) 595–607.

Vatri, E. 2001. Integration de la génération de quart de travail et de
l’attribution d’activités. Master’s thesis, École Polytechnique de
Montréal, Montreal.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

13
2.

20
4.

25
1.

25
4]

 o
n

10
 J

an
ua

ry
 2

01
8,

 a
t 0

6:
20

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

